

Installation and Operation Manual CSE OTS MFB+ZV R8 1F PUMP STATION

EN

1. Introduction

CSE OTS MFB+ZV R8 1F Pump Station is designed for installation on a heating system flow pipe. The pump station contains two ball valves, one ball valve is fitted with an integrated filter and magnet. The filter can be easily removed and cleaned without any tools. The pump station is intended for installation directly on a pipe, the minimum pipe centre distance from wall is 100mm.

2. Description of the Pump Station

Main Features	
Application	heating system flow
Description	consists of RPA 25-8 130 mm pump, ball valve w. non-return valve, ball valve w. filter and magnet, thermometer, insulation
Working fluid	water, water/glycol mixture (max. 1:1). The pH range 6,5 - 8,5.
Installation	flow pipe, min. pipe centre distance from wall = 100 mm
Code	21256

Data for CSE OTS MFB+ZV R8 1F Pump Station			
Fluid working temperature	5 - 95 °C		
Max. working pressure	10 bar		
Min. working pressure	0.5 bar		
Ambient temperature	5 - 40 °C		
Max. rel. humidity	80% non condensing		
Power supply	230 V, 50 Hz		
Insulation material	EPP RG 60 g/l		
Overall dimensions	345 x 140 x 150 mm		
Total weight	3.6 kg		
Connections	2 x G 1" F		

3. Direction of Flow through the Pump Station

4. RPA 25-8, 130 mm Pump

4.1. General Information

The high efficiency circulation pumps of the RPA series are used exclusively for the circulation of liquids in hot water heating systems. Operating the pump in other systems or in systems containing too little water, air bubbles or not pressurized can lead to its rapid destruction.

4.2. Pump Description

High efficiency wet-running ON/OFF circulation pump designed for circulation of fluids in heating systems; the pump is equipped with an anti-blocking motor and integrated electronic performance control; LED indication of operation for an easy check; choice between constant speed mode I, II, III, PP mode for variable differential pressure or CP mode for constant differential pressure.

4.3. Pump Wiring


Connecting/disconnecting the pump must be done by a professionally qualified person!

Insert the power cable into the connector on the pump. Connect the wires at the other end of the cable to the corresponding terminals in the terminal block.

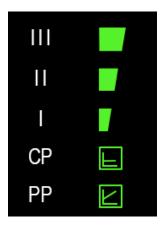
4.4. Pump Control

In the factory settings of the RPA 25-8 pump, the Constant Speed (CS) operating mode and the pump performance curve III are preset. After switching on, the pump runs at the factory setting or at the last setting.

The settings can be changed using the control button, see below.

By briefly pressing the control button:

You select the **operating mode** of the pump: constant speed (CS), proportional pressure (PP) or constant pressure (CP) and the pump **performance curve** (I, II, III). The LED lights show the pump settings (operating mode and performance curve).

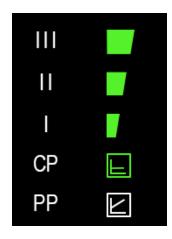

NUMBER OF PRESSES	OPER	RATING MODE	LED INDICATORS
0	CS III (factory setting)	constant speed III	III III III III III III III III III II
1	PP I	proportional pressure I	III II CP PP
2	PP II	proportional pressure II	III II CP PP
3	PP III	proportional pressure III	III III III III III III III III III II
4	CP I	constant pressure I	III II CP PP
5	CP II	constant pressure II	III II CP PP
6	CP III	constant pressure III	III III IIII IIII IIIII IIIIIIIIIIIIII
7	CSI	constant speed I	III II CP PP
8	CS II	constant speed II	III II CP PP
9	CS III	constant speed III	III III IIII IIII IIII IIII IIII IIIII IIII

PUMP AIR VENTING

If the pump is aerated:

Activate the vent function by pressing and holding the control button for 5 seconds. Venting is indicated by five flashing LED lights - see picture.

The pump alternately switches on and off during venting. Venting lasts for 5 minutes, after which the pump switches to normal mode.

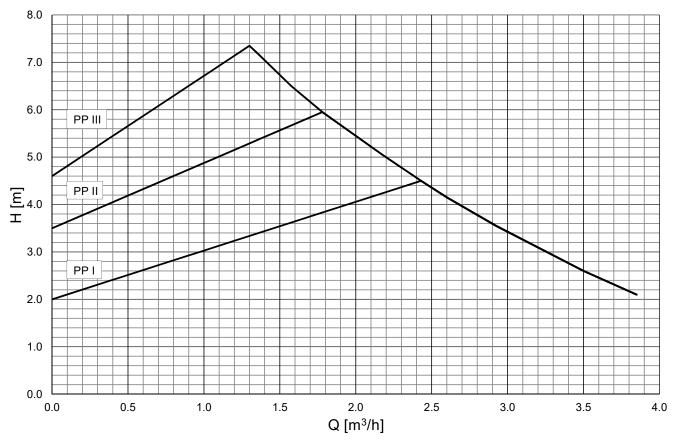


MANUAL RESTART

In case the pump has been stopped for a long time or is blocked, activate the manual restart by holding the control button for 8 seconds. A manual restart is signalled by four flashing LED lights - see the pic., and during it the pump alternately switches on and off.

Manual restart lasts for 5 minutes, after which the pump switches to normal mode.

If the pump is not unblocked, contact a specialist technician.

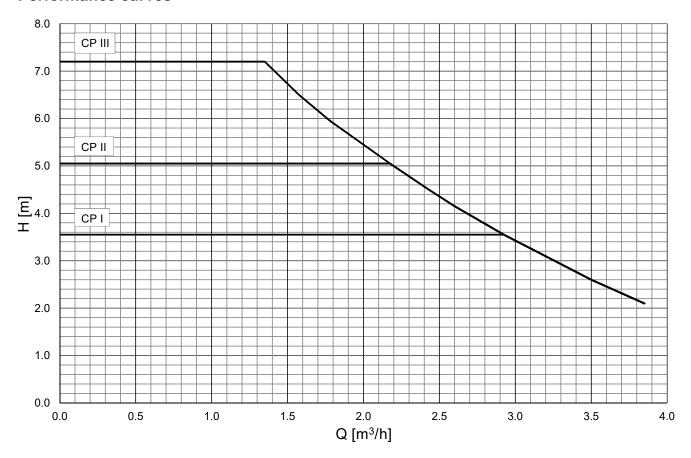

PUMP OPERATING MODES

Proportional pressure PP

The operating mode "proportional pressure" is recommended in systems where it is appropriate to reduce the pump discharge pressure together with the decrease of the required flow rate. A typical example is a heating circuit with radiators equipped with thermostatic valves, when choosing this operating mode can reduce the noise of the thermostatic valves, which is usually caused by closing of a larger number of radiators in the system. This mode, on the other hand, is unsuitable for circuits of heat sources where a decrease in head together with flow rate can even cause that these sources stop working.

As the pump also reduces the head when reducing the flow rate, there is a substantial reduction in the pump power consumption and thus also the operating costs. For larger heating circuits and for circuits where there are significant differences in the heating performance requirements in separate heating zones, this mode can temporarily cause underheating. For these systems, it may be more appropriate to switch the pump to constant pressure mode CP.

Performance curves

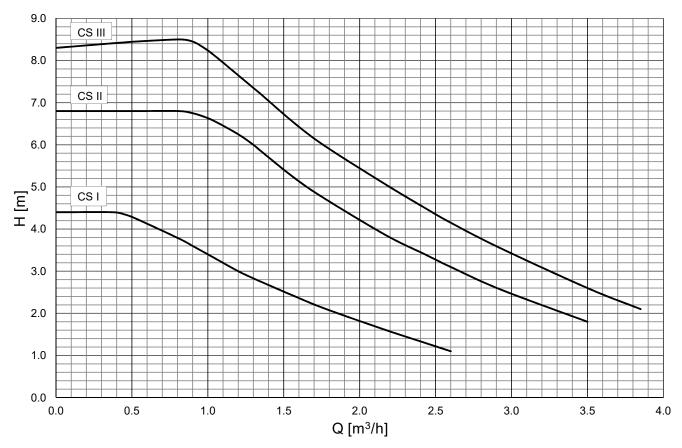


☐ Constant pressure CP

The operating mode "constant pressure" (constant head) is suitable for hydraulic circuits of heat sources (boilers, heat pumps, solar thermal systems, etc.), hot water tanks, hot water heaters, floor heating systems and extensive heating circuits where the previous PP mode could cause underheating by reducing the head.

By reducing the required flow, the pump maintains a constant head, so the reduction of pump performance is more gradual than in the PP mode.

Performance curves



■ Constant speed CS

The operating mode "constant speed" means that the pump does not adjust its speed in any way depending on the flow rate or head of the hydraulic circuit. The flow rate and head of the pump is therefore completely dependent on the set speed level (I, II, III) and on the setting of the hydraulic circuit. This mode is used where the more economical CP mode is not suitable. This is the same mode that older types of classic circulation pumps had, where the speed mode I, II, III was selected with a switch.

The mode may be suitable e.g. for older types of circuits where the flow rate is regulated by a throttle and the requirement is to maintain it. Furthermore, it can be suitable for solid fuel boilers that are equipped with older types of TSV valves with balancing by means of a manual throttle valve, or in other similar specific cases of a requirement for a constant pumping performance of the pump.

Performance curves

4.5. Technical Data

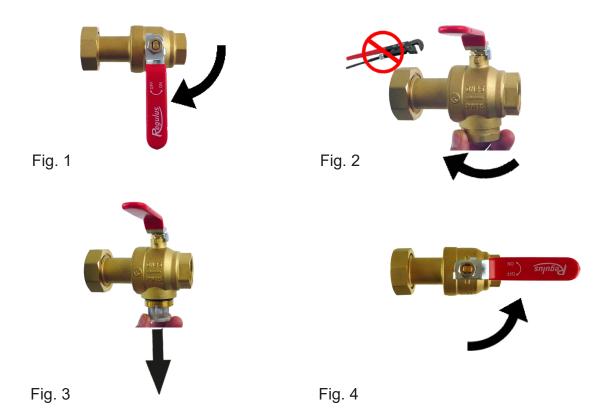
Electric Data	
Power supply	1~230 V, 50/60 Hz
Max. power consumption	65 W
Max. current	0.65 A
IP rating	IP 44
Insulation class	F
Motor protection	not needed (block resistant)

4.6. Faults, their cause and troubleshooting

FAULT	PROBABLE CAUSE	TROUBLESHOOTING
	Loose cable or power interruption	Check the power supply and power cable connection
Pump not running	Damaged pump control electronics	Replace the pump
	Blocked pump impeller	Disconnect the actuator and clean the pump
Noise in heating system / pump	Low pump suction pressure	Increase the pump suction pressure above the min. pump suction pressure - see chapt. 6
	Air in the system or pump	Vent the system and the pump
Pump is running but no	Closed valve in system	Check that valves are open
fluid circulation through system	Air in the system	Vent the system

Some types of faults are signaled on the pump with LED lights:

FAULT	SIGNAL	PROBABLE CAUSE	TROUBLESHOOTING
Blocked pump impeller	III II I CP PP	Impurities in the pump	Remove the actuator and clean the pump
Overvoltage or undervoltage	III U II U CP E PP	The mains voltage is too high or too low	Check that the power cable is correctly attached and that the mains voltage is correct
Power phase interruption inside the pump	III II I CP PP	Broken motor winding or other interruption of the power phase inside the pump	Replace the pump
Electrical short circuit inside the pump	III U II U CP E PP	Damaged motor winding or other electrical short inside the pump	Replace the pump


If the fault cannot be rectified, contact a specialist technician.

5. Ball Valve with Filter & Magnet

5.1. Maintenance, Cleaning

- 1. Close the ball valve by turning the lever by 90° in the direction of the OFF arrow (Fig. 1)
- 2. Unscrew the lid with magnet manually and take out the strainer (Fig. 2, 3).
- 3. Remove impurities from the magnet and strainer.
- 4. Return the clean strainer back to its place and screw on the lid with magnet.
- 5. Open the ball valve by turning the lever by 90° in the direction of the ON arrow (Fig. 4).

REGULUS spol. s r.o. E-mail: sales@regulus.eu Web: www.regulus.eu