RESOL DeltaSol[®] M Manual

for the professional

Installation

Operation

Commissioning

Fault localisation

Contents

Secur	rity instructions and imprint	2
Techr	nical data and functional survey	3
Exam	nples of application	4
1.	Installation	5
1.1	Mounting	5
1.2	Electrical connection	6
1.2.1	Connection survey	6
1.2.2	Sensors	6
1.2.3	Acutators	7
1.2.4	Bus-connection	7
1.2.5	Power connection	
2.	Basic systems and hydraulic versions	8
2.1	Survey of relay allocation	9
2.2	Survey of sensor allocation	12
3.	Sensors	14
3.1	Temperature sensors	

Imprint

This mounting- and operation manual including all parts is copyrighted.Another use outside the copyright requires the approval of RESOL - Elektronische Regelungen GmbH.This especially applies for copies, translations, micro films and the storage into electronic systems.

Editor: RESOL - Elektronische Regelungen GmbH

Important notice:

We took a lot of care over the texts and drawings of this manual and to the best of our knowledge and consent. As

Security advice

Please carefully read the manual for mounting and installation before commissionig the controller. In this way damages to the system can be avoided. Please also note that the installation must be adapted to the conditions provided by the customer. The installation and operation must be executed according to the approved technical regulations. The regulations for prevention of industrial accidents of industrial injuries corporations must be observed. The improper use as well as the incorrect modification of installation and construction result in the exclusion of any kind of liability. The following technical rules must especially be considered:

DIN 4757, Part 1

Solar heating plants with water and water mixtures as heat transfer medium; Standards for safety regulations

DIN 4757, Part 2

Solar heating plants with organic heat transfer mediums; Standards for the safety regulations

DIN 4757, Part 3

Solar heating plants; solar panels; terms; safety regulations: checking of the shutdown temperature

DIN 4757, Part 4

Solar thermal plants; solar panels; determination of degree of efficiency, capacity of warmth and presssure drop.

European CE-standards are being developed presently:

Irradiation sensors	14
Flowmeter	14
Remote control	14
Outdoor temperature sensor	15
Basics of operation	15
Operating elements and display	15
Control lamps	15
Menu structure	16
Menu branch	17
Functions and options	8 1
Commissioning	29
Commissioning of the Controller	29
Set for use with Solar cell	29
Balancing without flow meter V40	29
Balancing with flow meter V40	29
Tips for fault localization	30

faults can never be excluded, please note:

Your own calculations and plans under consideration of the current norms and DIN-directions should only be basis for your projects. We don't offer a guarantee for the completeness of the drawings and texts of this manual - they only represent some examples. They can only be used on own risk. No liability is assumed for incorrect, incomplete or false information and the resulting damages.

Errors and technical changes excepted

PrEN 12975-1

3.2 3.3 3.4 3.5 4. 4.1 4.2 4.3 44 5. 6. 6.1 6.2 6.3 6.4 7.

Thermal solar plants and their components; collectors, part 1: general standards

PrEN 12975-2

Thermal solar plants and their components; collectors, part 2: test methods

PrEN 12976-1

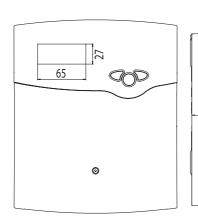
Thermal solar plants an their components; prefabricated plants, part 1: general standards

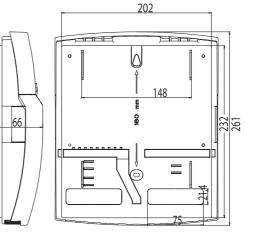
PrEN 12976-2

Thermal solar plants an their components; prefabricated plants, part 2: test methods

PrEN 12977-1

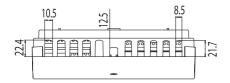
Thermal solar plants and their components; user-specific fabricated plants, part 1: general standards

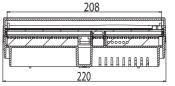

PrEN 12977-2

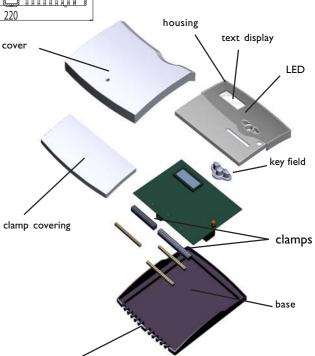

Thermal solar plants and their components; user-specific fabricated plants, part 2: test methods

PrEN 12977-3

Thermal solar plants and their components; user-specific fabricated plants, part 3: efficieny test of hot water tank


Scheme of the controller




- Menu-driven text display
- 15 sensor inputs
- 9 relay outputs
- 7 basic solar systems
- add-on options and functions
- free allocation for temperature difference and thermostat function
- RESOLV-BUS and RS-232 interface
- parameterization and control of the system by RESOL service center software

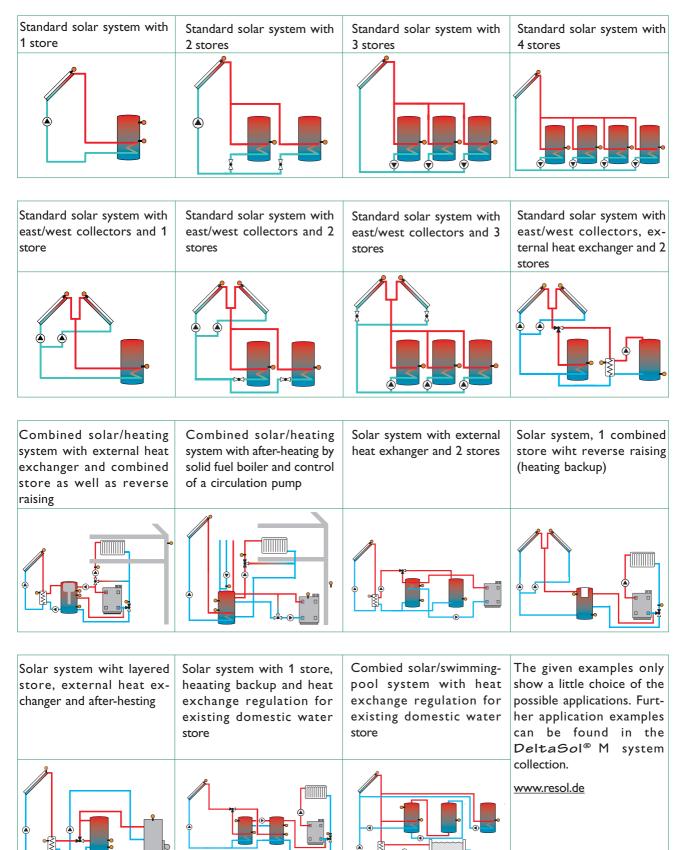
Technical data DeltaSol® M

Housing:	plug-in plastic, PC-ABS and PMMA
Protection type:	IP 20 / DIN 40 050
Ambient temp.:	0 40 °C
Size:	260 x 216 x 64 mm
Installation:	wall mounting, also suitable for mounting into patch panels
Display:	4-digit LC-text display (illuminated), menu-driven (multi- lingual), 2-coloured LED
Operation:	3 pushbuttons in the front of the housing
Functions:	Solar system controller for use in solar- and heating systems. Two integrated calorimeters and control of a wheather- compensated heating circuit. Adjustable system parameter and add-on options (menu-driven), balance- and diagnostic functions, function control according to BAW-guidelines.
Sensor inputs:	12 temperature sensors Pt1000 or 11 sensors PT1000 and 1 remote control RTA11, 2 flowmeter RESOL V40 and 1 so- lar cell RESOL CS10.
Relay outputs:	9 relay outputs, 4 of them are standars ones, 4 semi-conductor relays and 1 potential-free relay.
Bus:	RESOL VBus, RS232

cable conduits with strain relief

Power supply:	210 250 V~, 50 60 Hz
Power consumption:	6,3 (1) A 250 V~
Degree of pollution:	2
Rated impulse voltage:	2,5 kV
Ball pressure check:	75 °C
Mode of operation:	Тур 1.с

Electrostratic discharge can lead to damages of electronic components.


<u>A</u> A

Attention high-voltage carrying components.

CE

Examples of application DeltaSol® M

1. Installation

1.1 Mounting

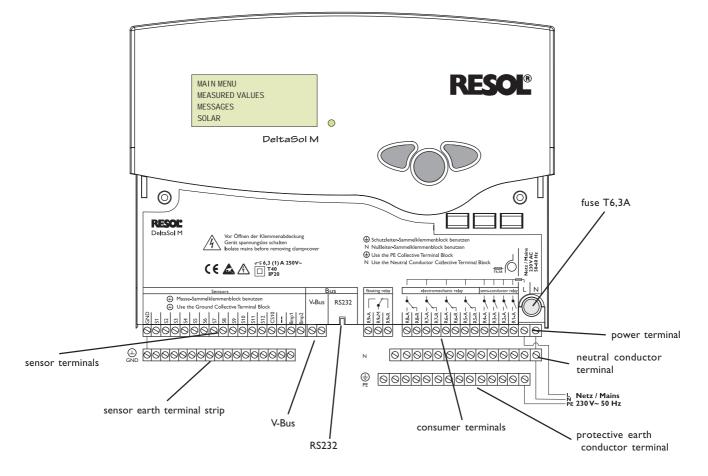
Attention! Switch-off power supply before opening the housing!

The unit must only be located internally. It is not suitable for installation in hazardous locations and should not be sited near to any electromagnetic field. The controller must additionally be equipped with an all-polar gap of at least 3 mm or with a gap according to the valid installaton regulations, e.g. LS-switches or fuses. Please pay attention to a seperate laying of the cable lines and installation of ac power supply.

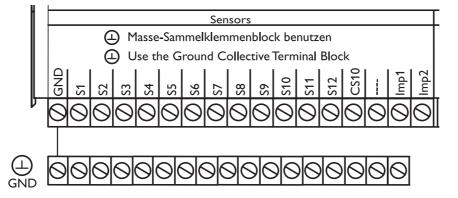
- 1. Unscrew the cross-recessed screw of the cover and remove it from the housing. Unscrew now the cross-recessed screws from the clamp cover and remove it.
- 2. Mark the upper fastening point on the underground and premount the enclosed dowel and screw.
- 2. Hang up the housing at the upper fastening point and mark the lower fastening point on the underground (hole center distance 160 mm, see back of the base), afterwards fit the lower dowel. Hang up the housing at the top and fix it with the lower fastening screw.
- Connect relay- and sensor cables as well as power cable according to clamp allocation and fix the ccables with strain-relief.
- 4. Reinsert clamp cover and cover of the housing and fix them with cross-recessed screws.

Tip:

A cable conduit (e.g. 60 x 110 mm²) should be directly mounted below the controller in order to faciliate the connection of the cables and to guarantee a clear running of the cables.The cables must be brought into the terminal block with removed cable insulation.


Scope of accessory bag:

- 2 x screws and dowels
- 1 x spare fuse T6,3A
- 11x strain relief and screw
- 3 x condenser 4,7 nF



1.2 Electrical wiring

1.2.1 Connection survey

1.2.2 Sensors

The controller is totally equipped with 15 sensor inputs. The earth connection for sensors is effected by the earth terminal strip (GND).

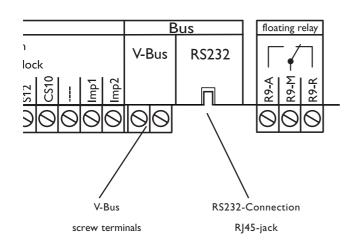

- The temperature sensors are connected to the terminals S1 ... S12 and GND (regardless of the polarity).
- The **irradiation sensor** (CS10) is to be connected to the terminals CS10 and GND (in consideration of the polarity!). The connection of the irradiation sensor with

the identification A (anode) is connected to ther terminal CS10 and the connection with the idientification K (cathode) is connected to the terminal GND.

- Two **flowmeters** RESOL V40 can be connected to the terminals Imp1, Imp2 and GND (regardless of the polarity).
- A **remote control** RESOL RTA11 can alternatively be connected to the terminal S10 (factory setting).

1.2.3 Actuators

The controller is totally equipped with 9 relays, to which the **consumer** (actuators), e. g. pumps, valves, mixer and auxiliary relays can be connected:


• The relays R1...R4 are semi-conductor relays, also suited for pump speed control.

R1-A ... R4-A = normally open R1 ... R4

N = neutral conductor (collective terminal strip) PE = protective earth conductor (collective

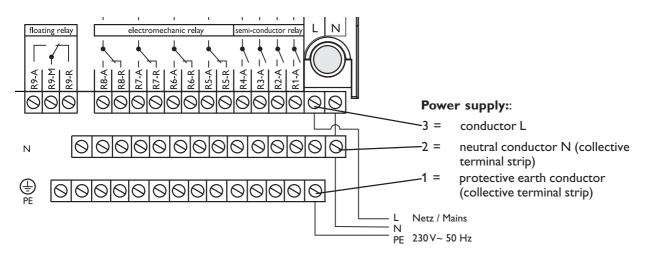
 protective earth conductor (collective terminal strip)

1.2.4 Bus

• The relays R5 ... R8 are electromagnetic relays with change-over contact.

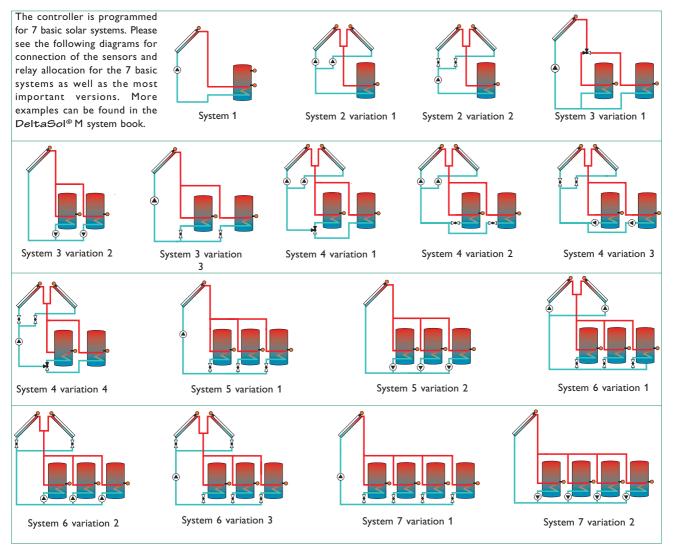
R5-A R8-A	=	normally open R5 R8
R5-R R8-R	=	break contact R5 R8
Ν	=	neutral conductor (collective
		terminal strip)
PE	=	protective earth conductor (collective
		terminal strip)

• **The relay R9** ist ein potenzialfreies Relais mit Wechselkontakt:


R9-M	=	center contactR9
R9-A	=	normally open R9
R9-R	=	break contact R9

The controller is equipped with two bus interfaces for data transfer:

- The RESOL VBus® for data transfer with and energy supply of external modules. The connection is effected at the two terminals marked "VBus®" (any polarity). One or more RESOL VBus®modules can be connected by this Data-Bus:
 - RESOL WMZ-M1, calorimeter module
 - RESOL large displays
 - RESOL HKM, modular heating circuit expansion
- 2.) The RS232-interface for direct connection to a PC. Measured values and parameter of the controller can be read out, adjusted processed and visualised by means of the evaluation tool RSC (Resol Service Center Software). The software makes possible a comfortable paramatrisation and function control of the system.


1.2.5 Power supply

The power supply to the controller must be effected by an external power switch (last procedure) and the supply voltage must be 210 ... 250 Volt (50 ... 60 Hz). Flexible lines must be fixed at the housing or in a cable conduit (see tip

on page 5) by the enclosed strain relief clamps and respective screws.

2. Basic systems and hydraulic versions

Example:

Relay allocation system 2					
relay 1	1 pump collector 1				
l'elay l	2 2-way-valve collector 1				
xplanation:	1.) System 2 version 1, pump for colle 1 at relay output 1				
	2.) System 2/version 2, 2-way valve collector 1 at relay output 1				

The tabular survey shows the standard relay- and sensor allocation for the 7 basic systems with their hydraulic posibilities (see relay-and sensor allocation for the basic systems on page 8).

The controller is equipped with 10 thermostat functions, 5 additional temperature difference functions (DeltaT) and 5 timers. These functions are combined into function blocks which are allocated to the relay outputs.

Function	Function block					
Tunction	1	2	3	4	5	
Thermostat	Thermostat 1	Thermostat 3	Thermostat 5	Thermostat 7	Thermostat 9	
	Thermostat 2	Thermostat 4	Thermostat 6	Thermostat 8	Thermostat 10	
Difference funtion ΔT	ΔT 5	ΔT 6	ΔT 7	ΔT 8	ΔΤ 9	
Timer function	Timer 1	Timer 2	Timer 3	Timer 4	Timer 5	

2.1 Survey of the relay allocations

Relay allocation system 1				
Relay 1	Solar pump			
Relay 2	External heat exchanger			
Relay 3	Function block 1			
Relay 4	Cooling function			
Relay 5	Bypass, DVGW, Parallel relay			
Relay 6	Function block 2, store charge controller, after- heating (HC)			
Relay 7	Function block 3, mixer ON (HC)			
Relay 8	Function block 4, mixer OFF (HC)			
Relay 9	Function block 5, Error message, after-heating depression, pump (HC)			

Relay allocation system 2			
Relay 1	1	Pump collector 1	
itelay i	2	2-way valve collector 1	
Relay 2	1	Pump collector 2	
Itelay Z	2	2-way-valve collector 2	
Relay 3	1	Function block 1 External heat exchanger	
	2	Solar pump	
Relay 4		Cooling function	
Relay 5		Bypass, DVGW, Parallel relay	
Relay 6		Function block 2, store charge controller, parallel relay	
Relay 7		Function block 3,mixer ON (HC)	
Relay 8		Function block 4, mixer OFF (HC)	
Relay 9		Function block 5, error message, after-heating depression, pump (HC)	

Relay allocation system 3				
	1	Solar pump		
Relay 1	2	Solar pump, store 1		
	3	Solar dumd		
	1	external heat exchanger		
Relay 2	2	external heat exchanger		
	3	2-way-valve store 1		
Relay 3		Function block 1		
	1	3-way-valve store 1-2		
Relay 4	2	Solar pump store 2		
	3	2-way-valve store 2		
Relay 5		Bypass, DVGW, parallel relays		
Relay 6		Function block 2, store charge controller, after- heating		
Relay 7		Function block 3,mixer ON (HC)		
Relay 8		Function block 4, mixer OFF (HC)		
Relay 9		Function block 5, error message, after-heating depression, pump (HC)		

Relay allocation system 5			
Relay 1	1	Solar pump	
itelay i	2	Solar pump store 1	
Relay 2	1	2-way-valve store 1	
itelay z	2	Solar pump store 2	
Relay 3		Function block 1 external heat exchanger	
Relay 4	1	2-way-valve store 2	
Itelay T	2	Solar pump store 3	
Relay 5	1	2-way-valve store 3	
itelay 5	2		
Relay 6		Function block 2, DVGW, parallel relays, Bypass store charge controller, after- heating (HK)	
Relay 7		Function block 3, mixer on (HC)	
Relay 8		Function block 4, mixer off (HC)	
Relay 9		Function block 5, error message, after heating depression, pump (HC)	

Relay	all	ocation system 4
Relay 1	1	Solar pump 1
	2	Solar pump 1
relay I	3	2-way-valve collector 1
	4	2-way-valve collector 1
	1	Solar pump 2
Relay 2	2	Solar pump 2
Relay Z	3	2-way-valve collector 2
	4	2-way-valve collector 2
	1	Function block 1 external heat exchanger
Relay 3	2	2-way-valve store 1
	3	Solar pump store 1
	4	Solar pump
	1	3-way-valve store 1-2
Relay 4	2	2-way-valve store 2
itelay 4	3	Solar pump store 2
	4	3-way-valve store 1-2
Relay 5		Bypass, DVGW, parallel relays
Relay 6		Function block 2, store charge controller, after- heating
Relay 7		Function block 3, mixer on (HC)
Relay 8		Function block 4, mixer off (HC)
Relay 9		Function block 5, error message, after-heating depression, pump (HC)

Relay	all	ocation system 6
	1	Solar pump 1
Relay 1	2	Solar pump store 1
	3	2-way-valve collector 1
	1	Solar pump 2
Relay 2	2	Solar pump store 2
	3	2-way-valve collector 2
Relay 3		Function block 1, DVGW, parallel relay, Bypass external heat exchanger, after-heating (HK)
	3	Solar dumd 3
	1	2-way-valve store 1
Relay 4	2	Solar pump store 3
	3	2-way-valve store 1
	1	2-way-valve store 2
Relay 5	2	2-way-valve collector 1
	3	2-way-valve collector 2
	1	2-way-valve store 3
Relay 6	2	2-way-valve collector 2
	3	2-way-valve store 3
Relay 7		Function block 3, mixer on (HC)
Relay 8		Function block 4, mixer off (HC)
Relay 9		Function block 5, error message, after-heating depression, pump (HC)

Relay	all	ocation system 7
Doloy 1	1	Solar pump
Relay 1	2	Solar pump store 1
Relay 2	1	2-way-valve store 1
itelay 2	2	Solar pump store 2
Relay 3		Function block 1, DVGW, parallel relay, bypass, external heat exchanger, after-heating (HC)
Relay 4	1	2-way-valve store 2
Itelay 4	2	Solar pump store 3
Dolov E	1	2-way-valve store 3
Relay 5	2	Solar pump store 4
Relay 6	1	2-way-valve store 4
	2	
Relay 7		Function block 3, mixer on (HC)
Relay 8		Function block 4, mixer off (HC)
Relay 9		Function block 5, error messages, after-heating depression, pump (HC)

2.2 Survey of sensor allocation

Sensor allocation system 1	
Sensor 1	Tcol
Sensor 2	Tst, DVGW
Sensor 3	Th 1, Tby, T-WT, T1 ∆T 5
Sensor 4	Th 2, T2 ∆T 5
Sensor 5	Th 3, T1 ∆T 6
Sensor 6	Th 4, T2 ∆T 6
Sensor 7	Th 5, T1 ∆T 7
Sensor 8	Th 6, T2 ∆T 7
Sensor 9	T1 WMZ1 (feed flow), T feed flow (HC) Th 7, T1 ∆T 8
Sensor 10	T2 WMZ1 (return flow) RTA11 (HC) Th 8, T2 ∆T 8
Sensor 11	T1 WMZ 2 (feed flow), T exterior (HC) Th 9, T1 ∆T 9
Sensor 12	T2 WMZ 2 (return flow) T-Sp (HC) Th 10, T2 ∆T 9
Impulse input 1	V40 WMZ 1
Impulse input 2	V40 WMZ 2

Sensor allo	cation system 3
Sensor 1	Tcol
Sensor 2	Tst, DVGW
Sensor 3	Th 1, Tby, T-WT, T1 ∆T 5
Sensor 4	Tsp2u, Th 2, T2 Δ T 5
Sensor 5	Th 3, T1 ∆T 6
Sensor 6	Th 4, T2 ∆T 6
Sensor 7	Th 5, T1 ∆T 7
Sensor 8	Th 6, T2 ∆T 7
Sensor 9	T1 WMZ1 (feed flow), T feed flow (HC) Th 7, T1 ∆T 8
Sensor 10	T2 WMZ1 (return flow), RTA11 (HC) Th 8, T2 ∆T 8
Sensor 11	T1 WMZ 2 (feed flow), T exterior(HC) Th 9, T1 ∆T 9
Sensor 12	T2 WMZ 2 (return flow), T-St (HC) Th 10, T2 ∆T 9
Impulse input 1	V40 WMZ 1
Impulse input 2	V40 WMZ 2

Sensor allocation system 2	
Sensor 1	Tcol
Sensor 2	Tst, DVGW
Sensor 3	Th 1, Tby, T-WT, T1 ∆T 5
Sensor 4	Th 2, T2 ∆T 5
Sensor 5	Th 3, T1 ∆T 6
Sensor 6	Tcol2, Th 4, T2 Δ T 6
Sensor 7	Th 5, T1 ∆T 7
Sensor 8	Th 6, T2 ∆T 7
Sensor 9	T1 WMZ1 (feed flow), T feed flow (HK) Th 7, T1 ∆T 8
Sensor 10	T2 WMZ1 (return flow), RTA11 (HK) Th 8, T2 ∆T 8
Sensor 11	T1 WMZ 2 (feed flow), T exterior (HK) Th 9, T1 ∆T 9
Sensor 12	T2 WMZ 2 (return flow), T-St (HK) Th 10, T2 ΔT 9
Impulse input 1	V40 WMZ 1
Impulse input 2	V40 WMZ 2

Sensor alloc	ation system 4
Sensor 1	Tcol
Sensor 2	Tst, DVGW
Sensor 3	Th 1, Tby, T-WT, T1 ∆T 5
Sensor 4	Tst2, Th 2, T2 ∆T 5
Sensor 5	Th 3, T1 ∆T 6
Sensor 6	Tcol2, Th 4, T2 Δ T 6
Sensor 7	Th 5, T1 ∆T 7
Sensor 8	Th 6, T2 ∆T 7
Sensor 9	T1 WMZ1 (feed flow), T feed flow (HC) Th 7, T1 Δ T 8
Sensor 10	T2 WMZ1 (return flow), RTA11 (HC) Th 8, T2 ΔT 8
Sensor 11	T1 WMZ 2 (feed flow), T-exterior (HC) Th 9, T1 ∆T 9
Sensor 12	T2 WMZ 2 (return flow) T-St (HC) Th 10, T2 ∆T 9
Impulse input1	V40 WMZ 1
Impulse input 2	V40 WMZ 2

Sensor allocation system 5	
Sensor 1	Tcol
Sensor 2	Tst, DVGW
Sensor 3	Th 1, Tby, T-WT, T1 ∆T 5
Sensor 4	Tst2, Th 2, T2 ∆T 5
Sensor 5	Tst3, Th 3, T1 ∆T 6
Sensor 6	Th4, T2 ∆T 6
Sensor 7	Th 5, T1 ∆T 7
Sensor 8	Th 6, T2 ∆T 7
Sensor 9	T1 WMZ1 (feed flow), T feed flow (HC) Th 7, T1 ∆T 8
Sensor 10	T2 WMZ1 (return flow), RTA11 (HC) Th 8, T2 ∆T 8
Sensor 11	T1 WMZ 2 (feed flow), T-exterior (HC) Th 9, T1 ∆T 9
Sensor 12	T2 WMZ 2 (return flow), T-Sp (HC) Th 10, T2 ∆T 9
Impulse input 1	V40 WMZ 1
Impulse input 2	V40 WMZ 2

Sensor all	ocation system 7
Sensor 1	Tcol
Sensor 2	Tst, DVGW
Sensor 3	Th 1, Tby, T-WT, T1 ∆T 5
Sensor 4	Tst2, Th 2, T2 ∆T 5
Sensor 5	Tst3
Sensor 6	Tst4
Sensor 7	Th 5, T1 ∆T 7
Sensor 8	Th 6, T2 ∆T 7
Sensor 9	T1 WMZ1 (feed flow), T feed flow (HC) Th 7, T1 ∆T 8
Sensor 10	T2 WMZ1 (return flow), RTA11 (HC) Th 8, T2 ΔT 8
Sensor 11	T1 WMZ 2 (feed flow), T exterior (HC) Th 9, T1 ∆T 9
Sensor 12	T2 WMZ 2 (return flow), T-St (HC) Th 10, T2 ∆T 9
Impulse input 1	V40 WMZ 1
Impulse input 2	V40 WMZ 2

Sensor allo	ocation system 6
Sensor 1	Tcol
Sensor 2	Tst, DVGW
Sensor 3	Th 1, Tby, T-WT, T1 ∆T 5
Sensor 4	Tst, Th 2, T2 ∆T 5
Sensor 5	Tst3
Sensor 6	Tcol2
Sensor 7	Th 5, T1 ∆T 7
Sensor 8	Th 6, T2 ∆T 7
Sensor 9	T1 WMZ1 (feed flow), T feed flow (HC) Th 7, T1 ∆T 8
Sensor 10	T2 WMZ1 (return flow), RTA11 (HC) Th 8, T2 ∆T 8
Sensor 11	T1 WMZ 2 (feed flow), T exterior (HC) Th 9, T1 ∆T 9
Sensor 12	T2 WMZ 2 (return flow), T-Sp (HC) Th 10, T2 ∆T 9
Impulse input 1	V40 WMZ 1
Impulse input 2	V40 WMZ 2

3. Sensors

3.1 Temperature sensors

Note:

In order to avoid overvoltage damages at collector sensors (e.g. from local lightning storms), we recommend to install the overvoltage protection **RESOL SP1**.

3.2 Irradiation sensor

3.3 Flowmeter

3.4 Remote control

Precision-platin sensors type PT1000 (FKP and FRP) are used for the controller RESOL DeltaSol M.

Depending on the individual solar system, the RESOL product range contains 3 different sensor types: sensors with immersion sleeves, flatscrew sensors and cylindrical clip-on sensors. The sensor types FK and FR have the same electrical features and are available in the same models, they only differ in the connecting cable:

FK: 1,5 m weather- and temperature resistant silicone cable for temperatures between -50 $^{\circ}$ C ... +180 $^{\circ}$ C, mostly used for collectors.

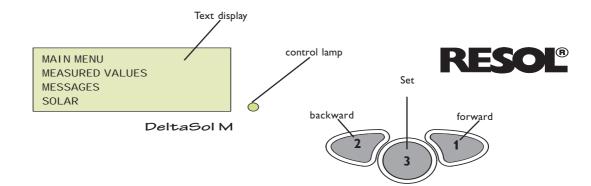
FR: 2,5 m PVC cable for temperatures between -5 °C ... +80 °C, mostly used for stores.

Make sure that all electrical works are carried out according to the relevant local and IEE-regulations. The sensor cables carry low voltages and they must not run together in a cable conduit with cables carrying higher voltages than 50 Volts. When using longer cables or cable conduits, please use screened cables. The sensor cables can be lengthened up to 100 m, but the cross section must be 1,5 mm² (or 0,75 mm² up to a cable length of 50 m); screened cables should be used preferably. The sensors must not be in direct contact with water, please always use immersion sleeves.

The solar cell is used for recording of the momentary irradiation intensity. The short-circuit flow rises with the increase of irradiation intensity. The relation between the short-circuit flow and the irradiation intensity is directly proportional. The connecting cord can be expanded up to 100 m.

The RESOL V40 is a measuring instrument with contact donator for recording the flow of water or water/glycol mixtures and is used in combination with the calorimeter integrated into the DeltaSol M. After flow of a specific volume, the V40 sends an impulse to the calorimeter. The used heat amount is measured by these impulses and a measured temperature difference with the help of predefined parameters (glycol type, concentration, heat cpacity, etc.).

The remote control RTA11 allows a comfortable adjustment of the heating curve of the controller from the living room.The rise of the heating curve causes an increase in flow temperature, a fall causes a decrease. The remote control additionnally contains the functions "heating circuitoff" and "fast heating-up".


3.5 Outdoor temperature sensor

The outdoor temperature sensor FAP12 is suitable for mounting on even surfaces and it is needed for *DeltaSol* M's weather controlled heating curcuit. The sensor has a wether resistant housing.

4. Basics of operation

4.1 Operating devices and display

The controller is only operated by the 3 pushbuttons beside the display. The forward-button (1) is used for scrolling forward through the menu or to increase the adjustment values. The backward-button (2) is accordingly used the other way round. Button 3 is used for selection of the menu lines and confirmation.

- Plese select your requested menu by the buttons 1 and 2.
- Shortly press button 3, the selected submenu is now shown on the display. By pressing the "back"-button, the display returns to the former menu level.
- Press buttons 1, 2 and 3 several times until the choosen menu line is reached.
- Shortly press button 3 in the relevant menu line for modification of adjustment values - "change value" appears on the display - adjust the requested value by

4.2 Control lamp

MAIN MENU MEASURED VALUES MESSAGES SOLAR DeltaSol M pressing the buttons 1 and 2 (for large intervals, please keep the button pressed).

- Shortly press button 3 in order to confirm the adjustment.
- Please reply to the following security request "Store?" by choosing "yes" or "no" (buttons 1 and 2) and confirm with button 3.

• Note:

If no input is made within 7 seconds in the modification mode, the controller automatically changes into the read-out mode. If no button is pressed for 4 minutes in the read-out menu, the display returns to the measuredvalues menu (in case of an existing message, the display changes into the message menu). If button 3 is pressed for 2 seconds, the display goes back to the main menu.

The controller is equipped with a red-/green control lamp. The following control and system status are signalised:

- green flashing: automatic operation, no malfunction
 - red flashing: malfunction of the system

4.3 Menu structure

Note: The selectable adjustment values and options depend on the different functions and only appear on the display if they are available for the adjusted system parameter and cleared for the relevant user code.

User codes:

1.Expert-code 262 (factory setting):

All menus and adjustment values are shown and all adjustments can be changed.

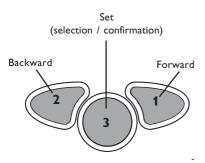
2. User-code 077

The expert level is shown, the parameter access is restricted.

3. Customer-code 000

The expert level is blinded out, no change of parameter and balance values is possible.

The customer-code should be set to "000".

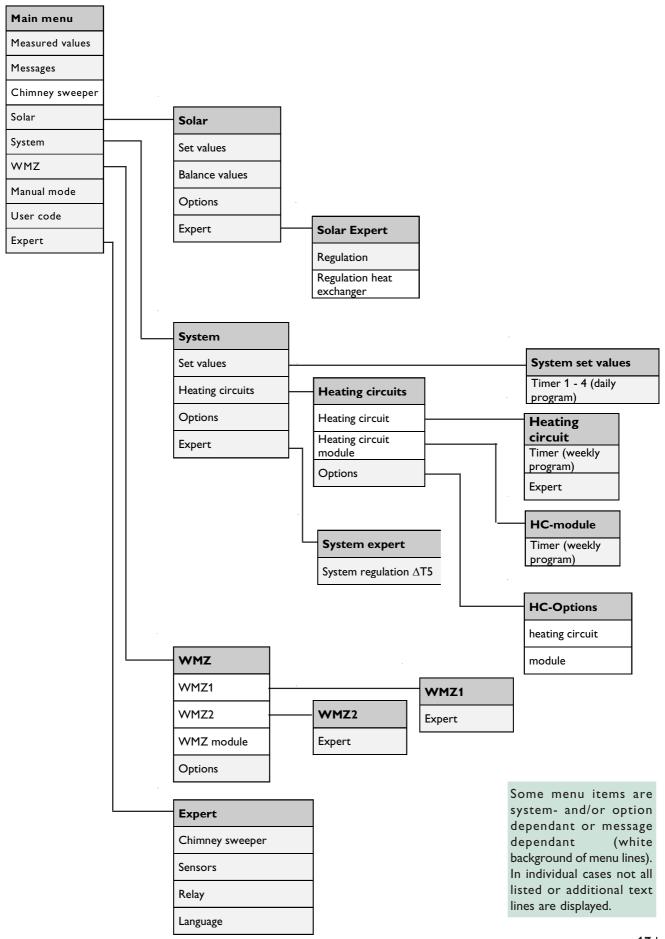

The adjustment and control of the controller is effected by the menu. For first operation, the indiaction level is in the main menu. In the first line of each submenu you will find the option "return", by which the read-out can be reset by one menu level. In the following diagrams you will find the complete menu contents; as some of the menu points depend on a system, option or a message, in some cases not all of the shown text lines are indicated. "Main menu" is shown on the display in original position. A selection can be made between the following 9 menus:

- MERSURED VALUES 1.
 - MESSAGES
- 3. SOLAR

2.

- 4. SYSTEM
- 5. WMZ MANUAL OPERATION
- 6. USER CODE
- 7.
- EXPERT 8.

The clear text display shows a 4-line part of the selected menu


Tip:

After first commissioning, the measuring value menu ist shown in the basic level. In order to simplify the operation, RETURN is not shown in the menu. If button 3 is shortly pressed, a change into the superior menu.

If button 3 is pressed longer than 3 seconds in all menus, the controller immediately returns into the menu "measured values".

4.4 Menu branch:

5. Functions and options

Pump speed control:

SOLAR/EXPERT/SOLAR CONTROL/TYPE

- 1. NONE pump speed control deactivated
- 2. RISE Standard-pump speed control (factory setting)
- 3. *PI-REG.* special pump speed control, more information on inquiry.

EXPERT/RELAY/MIN-SPEED1 (2,3,4)

Target temperature:

set SOLAR/OPTIONS/TARGET TEMP. to "YES" SOLAR/SOL.ADJUST.VAL./TCOLLSET The relais 1 to 4 are designed as semicoductors for usual stadard pumps to adjust the pump speed.

The relative pump speed controll is adjustable in 10% measures of the current temperature difference between collector- and store temperature. At which temperature difference the pump speed is increased can be adjustet by the parameter 'Rise'.

In some cases is it necessary to revise the factory setting of the minimum pump speed (30%).

To set the pump speed indipendent from the collector temperature (to keep the collector temperature constant). Therefor the depency of the temperature difference is detached. In order to adjust the set collector temperature us set value *TCDLLSET*.

Bilancing function:

SOLAR/BALANCE VALUES

Heat quantity balancing:

WMZ/WMZ1 (2)

set UNZ/OPTIONS/UNZI (2) to "YES". set UNZ/UNZI (2)/EXPERT/SEN.-FLOW e.g. 1 set UNZ/UNZI (2)/EXPERT/SEN.-RETURN e.g. 1 set UNZ/UNZI (2)/EXPERT/FLOW set UNZ/UNZI (2)/EXPERT/RELRY

set UMZ/OPTIONS/UM21(2) to "YES". set UMZ/UM21(2)/EXPERT/SEN.-FLOW e.g. "9" set UMZ/UM21(2)/EXPERT/SEN.-RETURN e.g. "10" set UMZ/UM21(2)/EXPERT/FLOWMETER to "YES" set UMZ/UM21(2)/EXPERT/VOL/PULS accordingly

Antifreeze:

0: water 1: propylene glycol 2: ethylene glycol 3:Tyfocor® LS / G-LS The controller possesses an integrated bilancing function with it maximum temperatures, hours of operation of the relais and operation time since commissioning the controller can be asked.

These values can be reset except of the counter 'Operating days'.

The controller possesses 2 integrated heat amount counter which enables the 2 principles of heat quantity balancing functions. The information in Wh, kWh and MWh has to be added together.

Bilancing without flowmeter RESOLV40

The balancing takes place as estimation with the aid of the difference between flow- and return temperature and the adjusted flow rate. The needed sensor must be assigned. Therefor an already used sensor can be applied. Through this its original function is not influenced. The bilancing is realised when the selected output *RELRIS* is activated.

Bilancing with flowmeter RESOLV40

The bilancing takes place with the assistance of the difference between the flow and return temperature and the volume flow, measured by the flowmeter. The needed sensor must be assigned. Therefor an already used sensor can be applied. Through this its original function is not influenced.

Antifreeze: Adjustment channel water / glykol

Adjustment rage 20 ... 70 Vol % factory setting 40 %

Hydraulics variants:

SOLAR/OPTIONS/LOADING

Menu-Language:

EXPERT/LANGUAGE

Functio block:

ARRANGEMENT/OPTIONS

Example functional switching circuit 1: set RRRANGEMENT/OPTIONS/THERMO.1 to "SES". set RRRANGEMENT/OPTIONS/\DT-FUNE9 to "SES".

set ARRANGEMENT/EXPERT/SEN.-TH1 e.g. "4". set ARRANGEMENT/EXPERT/SEN1- Δ T5 e.g. "4". set ARRANGEMENT/EXPERT/SEN2- Δ T5 e.g. "5". The systems can be distiguished into pump- and ventil-driven systems. The adjustment takes place according the survey of the system with its hydraulic variants (see page 8).

You find in the menu "languages" different selectable languages.

Depending on the selected system or activated options there are up to 5 function blocks and they are composed of thermostat function, timer and difference functions (see page 9). With these, further components or functions e.g. solid fuel boiler, heater support and after heating can be realised.

These function blocks are assigned to different relais depending on the selected system (see survey of relais allocation). The needed sensor must be assigned. Therefor an already used sensor can be applied. Through this its original function is not influenced.

Function blocks' fuctions are linked together.

∆T-Function (Function block 1 ... 5):

RRRANGEMENT/OPTIONS

Thermostat-Function (Function block 1 ... 5):

RRRANGEMENT/OPTIONS

Maximum store temperature:

Tspmax: Adjustment range 4 ... 95 °C Factory setting 60 °C Hysteresis 2 K (Factory setting)

Security switch-off of the store:

Fixed value 95 °C Hysteresis = 2 K

Store blocked:

This option activates on if the adjusted switch-on temperature difference is exceeded and switches-off if the measured temperature difference falls below the adjusted switch-off temperature difference. The reference sensor is selectable in the expert menu.

This option switches on if the selected switch-on tempeature is reached and switches-off if the selected switch-off temperature is exceeded. The reference sensor is selectable in the expert menu.

If the adjusted maximum temperature Tspmax is exeeded, the loading of the store is stopped. If the store cools down by more than 2 K, the store loading starts again.

If the cooling option is activated (e.g. collector cooling), the store is charged beyond the adjusted maximum temperature.

In order to avoid too high temperature in the store, the security switch-off of the store is additionally provided, which also blocks the store for cooling option. If a store temperature of 95 $^{\circ}$ C is reached, the security switch-off is activated.

A store is blocked if either the belonging sensor is defect or the security switch-off temperature is reached.

Collector security switch-off:

Tcolnot: Adjustment range 110 ... 200 °C Factory setting 130 °C Hysteresis 10 K

Collector blocked:

Solar collector blocked:

Tcolmin: Adjustment range 10 ... 90 °C Factory setting 10 °C Hyteresis 2 K

Store charging:

∆Ton:

Adjustment range 1,5 ... 20,0 K Factory setting 5,0 K

$\Delta Toff:$

Adjustment range 1,0 ... 19,5 K Factory setting 3,0 K

Cooling function:

Operation mode (switching conditions):

In case of high collector temperatures (dependant on e.g. system pressure or content of frost protection), the heat transport medium evaporates . That means, that a solar charge is no longer possible.

If the adjusted temperature threshold Tcolsec is exceeded, the charge at each collector is suspended.

Note: if the option "collector cooling" is activated, the security switch-off temperature can not be adjusted lower than the maximum collector temperature (Tcolmax).

A collector is considered to be blocked if either the sensor is defect or the securtiy switch-off temperature is reached.

A collector for solar operation is considered to be blocked if the adjusted minimum temperature is not exceeded or the condition "collector blocked" is achieved.

If the adjusted switch-on difference ΔTon between collector and store is exceeded, the store is charged.

If this difference falls under the adjusted switch-off difference $\Delta \text{Toff},$ the store is again charged.

The store charge is also suspended if the relevant store or collector is blocked (collector solar blocked) or if the store is at maximum limitation.

The cooling function can be used in 1-store systems. If the store is at maximum limitation, the surplus energy in the collector can be derived. The pump output (provided that it is activated) is controlled with relative maximum pump speed.

: If the store is at maximum limitation and the switch-on temperature difference DeltaTon between collector and store is reached, the solar circuit (primary) and the cooling relay are operated.

If the switch-off temperature difference $\Delta Toff$ is underrun in this period, the solar circuit and the cooling relay are switched-off.

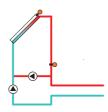
2-collector systems: Only the collector circuit, which complies with the above described switch-on criteria, is operated in these systems.

	As soon as 4 °C are reached at the collector, the frost
Frost protection:	protection function operates the loading circuit between collector and 1st store in order to protect the medium in the loading circuit against freezing or coagulation.
	If the collector temperature exceeds 5 $^\circ\text{C}$, this function is switched-off.
	If the 1st store is blocked in the system, this function ids suspended.
	The pump output is controlled with relative maximum pump speed (provided that the function is activated).
2-collector systems:	Only that circuit is operated, which complies with the above-mentioned switch-on conditions.
Chimney sweeper:	This function is used for activating a fixed relay condition if it is required. Because of that e.g. in case of flue gas measurement made by the chimney sweeper, the relays required for activation of the boiler can be switched-on. The required relay status is adjusted in the chimney sweeper menu (Expert/Chimney sweeper).
St2on St4off:	By means of this function, the respective store can be "removed" from the solar regulation, that means that it is no longer considered for solar charge. The temperature of the store is furthermore indicated but a sensor defect is no longer signalised.
Collector cooling function: <i>Tcolmax:</i> <i>Adjustment range 80 160 °C</i>	The collector cooling function starts if the adjusted maximum collector temperature is reached. If this temperature is underrun by 5 K, this function is switched- off.
Factory setting 110 °C Hysteresis 5 K	The collector is cooled by the heat dissipation to the next free store, that means to a store which is not blocked. The numerically last store is not considered (swimming pool protection).
	The pump output is controlled with relative maximum pump speed (provided that it is activated).
	Note: it is not possible to adjust the maximum collector temperature (Tcolmax) higher than the collector security switch-off temperature.
2-collector systems:	
2 separate collector circuits (2 pumps):	Only that collector circuit, which needs to be cooled, is operated. If one store is charged right now by another collector, this charge is continued.
common collector circuits (1 pump):	The "pump speed" of the pump acts upon collector cooling. A parallely operating store charge by the 2nd collector is subordinated.

Recooling: Activating: Tst ≥ Tstmax Hysteresis 2 K	This function is used for keeping the system temperatures and consequently the thermal load as low as possible. If all stores of a system have exceeded the maximum temperature, the loading circuit for 1st store is again operated in order to reduce the surplus energy from tubes and collector. This "circulation" is again switched-off if the maximum store temperature is underrun by 2 K.
2-collector systems:	Both collector circuits are activated in a 2-collector system.
Combined with collector cooling function: Activation: $(Tst-Tcol) \ge 5 \text{ K}$ Deactivation: $(Tst-Tcol) < 3 \text{ K}$	If the option "collector cooling" is activated in addition to the recooling function, the response action of the recooling function changes. The objective is now to dissipate the energy supplied by the collector cooling.
	If the temperature at the collector decreases by 5 K below that of the store, the recooling function is activated and the loading circuit is again operated (for cooling of the store). If the difference between collector and store decreases below 3 K during that cooling period, the function is switched-off.
2-collector systems:	In a 2-collector system, the collectors are separately operated due to the above-desribed switch-on conditions.
DVGW:	The DVGW-function controls if the temperature at the given sensor (Sen-DVGW) exceeds a temperature of 60 °C. If 60 °C are not reached up to DVGW start time, this
	function is activated in order to activate e.g. an after-heating. The function is switched-off when 60 °C are reached at the relevant sensor or at midnight (reset).
	If the relevant sensor does not work, this function is suspended.
CS-Bypass:	f the irradiation exceeds the adjusted value CS-bypass, so that the collector circuit is operated.
CS-Bypass: Adjustment range 100 500 W/m ² Factory setting 200 W/m ²	It is switched-off if the irradiation falls 2 minutes below the value CS-bypass.
	The collector circuit is operated with minimum pump speed.
2-collector systems:	If a loading of the stores is effected in these systems, the function is switched-off.

Tube collector special function:	This function considers the "unfavourable" sensor positioning of tube collectors.
	This function operates within a given time slot ("tube-start" and "tube-end"). It activates the collector circuit every 30 minutes at collector standstill (adjustable by parameter "tube collector") for 30 seconds (adjustable by the parameter "tube-run") in order to compensate the delayed temperature measurement.
	If the collector sensor is faulty or the collector is blocked, this function is suspended or switched-off.
	The collector circuit is operated with minimum pump speed control.
2-collector systems:	
2 separate collector circuits (2 pumps):	Both collectors are independantly operated by this function.
	If store charge is effected by one collector, the other one is nevertheless operated according to the adjusted standstill time.
common collector circuit (1 pump):	If store charge is effected by one collector, the other one is nevertheless operated according to the adjusted standstill time. That means, that minimum pump speed is adjusted and a possible pump speed is ignored by the controller.

Bypass:


Activation: Tby \geq Tsp + 2,5 K Deactivation: Tby < Tsp + 1,5 K In order to avoid energy emission from the store when starting the store charge, this function provides that the cold medium from the lead is passed the store via bypass.

If the lead is warm enough, the store charge can start.

The bypass relay is operated if the relevant sensor is 2,5 K higher than store charge temperature and the irradiation condition for store charge (see store charge) is achieved.

This function is switched-off if the temperature difference is lower than 1,5 K.

Pump version:

A bypass pump is advanced to the collector pump in this version.

The bypass pump is at first operated in case of a possible store charge.

If the above-mentioned switch-on condition is achieved, the bypass pump is switched-off and the collector circuit pump is activated.

This version is only available for 1-collector systems.

External heat exchanger:

Activation:T-HE \geq Tst + HE- Δ Ton (collector circuit active) Factory seeting: HE- Δ Ton = 5,0 K

Dectivation: T-HE < Tst + HE- Δ Toff Factory setting: HE- Δ Toff = 3,0 K

Parallel relay:

Store loading:

Activation: Temperature sensor Th3 and sensor Th4 \leq Th3on Deactivation: Temperature sensor Th3 and sensor Th4 \geq Th3off

After-heating-depression:

This function is used for reasonable linking of charge circuits, which are separated by an external heat exchanger (different heat transfer media).

The heat exchanger relay is operated if the relevant sensor shows a temperature which is by the adjusted value "heat exchanger DeltaTon" higher than the store temperature and the switch-on conditions for store charge (see "store charge") are achieved.

The relay is switched-off if this temperature difference falls below the adjusted switch-off difference WT-Delta Toff.

In contrast to the bypass function, a differential regulation between T-WT and Tst can be realised by means of the heat exchanger relay.

In systems in which stores are equipped with loading pumps, the relay "external heat exchanger" controls the primary circuit pump.

If the solar circuit pump(s) is/are switched-on, this relay is parallely activated.

In 2-collector systems which are working with 2 pumps it is activated if one of the 2 pumps are switched-on.

In order to realize the after-heating of a store within a certain store volume (zone), this function needs 2 sensors to control switch-on and switch-off level.

The switching-on and -off temperatures of the "free" thermostat 3 (Th3 on and Th3 off) are regarded as reference parameters. The reference sensors can be activated by Sen-Th3 and Sen Th-4.

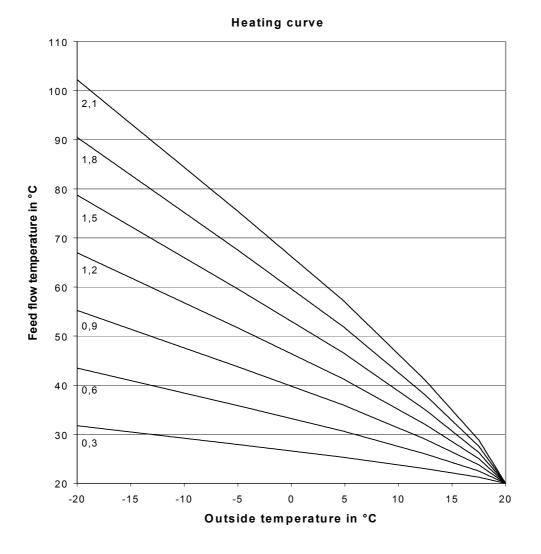
If the measured temperatures at both reference sensors fall below the adjusted switching treshold Th3on, one relay is switched-on. It is switched-off if the temperature at both sensors is higher than Th3 off.

If one of the two sensors is faulty, the store loading is suspended or broken off.

In addition to that, this option can temporally be blocked by means of the daily timer 2.

This function is activated if a previously selected solar store (parameter: "Hz-suppr.St" in the menu Solar - Expert) is charged.

Solar means that this store loading is only made for energy measurement and not for cooling purpose or something else.



Message relay (Error report):	This function is activated if a fault is realized by the controller. In that case the message relay is activated (e.g. for pilot lamps)
	Possible errors are:
	 Sensor defect Real-time-clock defect Ram (EEPROM) defect
	Please note that a message made by the plausibility control does not activate a relay.
System warning "nocturnal circulation":	This message is shown if the collector temperature between 11 p.m. and 5.00 a.m. is higher than 40 °C or a store is charged.
	In order to avoid release of this message due to short-term disturbences, the above-mentioned release condition must be given for 1 minute.
System warning "∆T too high":	This message is shown if a solar loading is effected for a period of 20 minutes with a difference higher than 50 K.
Heating curcuit:	
	The controller enables to controll two independent weather controlled heating curcuits. One heating curcuit can be cotrolled by the internal heating curcuit function and one further by the external module RESOL HKM2.
Internal heating curcuit control: set RRRANGEMENT/HEAT.CURCUITS/OPTIONS/HEAT.CURC.to,, YES"	
Tflow:	The value temperature feed flow shows the current flow temperature of the heating medium.
Toutd.:	The value outside temperature shows the outside temperature influenced by the weather.
Flow Set:	The measured outside temperature and the adjusted heating curve result the set flow temperature. Onto this the correction value of remote control as well as the day correction or night correction will be added. Set flow temperature = heating curve temperature + remote control + (day correction or night correction). For the case that the set flow tempearature is higher than the adjusted flow maximum temperature, the set flow temperature is equate with the flow maximum temperature.
Night corr.: Adjustment range: -20 +30 K Factory setting: -5 K	Adjustment channel for the night correction of the heating curcuit. For the night correction daily timer 1 with its 3 time frames (see below) can be adjusted.The set flow temperature will be dropped by the adjusted temperature difference.

Adjustment range: -20 ... +30 K Factory setting: -5 K

Adjustment range: -5 +45 K Factory setting: 5 K	Day corr.:	Adjustment channel for the day correction of the heating curcuit. The day correction is always activating outlying of the 3 time frames of the night correction. The set flow temperature will be dropped or risen by the adjusted temperature difference.
Adjustment range: 10 +100 °C Factory setting: 50 °C	Tflowmax:	Adjustment channel for the maximum tolerable flow temperature of the heating curcuit. By exeeding the maximum flow temperature the heating curcuit will be switched off (the pump is deactivated and the mixer is closed).
Adjustment range: 0,3 3,0 Factory setting: 1,0	Heating curve:	Dependance of the flow temperature, the outside temperature and the chosen heating curve.

Mixer: Adjustment range: 1 20 s Factory setting: 4 s	By use of the mixer function it brings more the flow temperature and the set flow temperature in the line.Therefor the mixer is opened or closed accordingly the variation of the clock pulse.The mixer is controlled by the particular timing device. The break is calculated by the variation of the set- and actual value.
Adjustment range: 0 40 °C Factory setting: 20 °C	Adjustment channel of the summer activity. If the outside temperature exeeds the adjusted value the heating curcuit switches off.
Store prio.:	This function switches-off the heating curcuit during after- heating. The option service water has to be activated and the boiler loading has to be realised by the DeltaSol® M.
set RRRANGEMENT/HERT.CURCUITS/HERT.CURCUIT/STORE PRID. to ,,ON*	
Timer: (weekly clock timer) Example: The night correctionruns Tuesday from 22:00 to 6:00 and	The timer sets either the day correction or the night correction for the change of the set flow temperature is used. 21 different time frames can be set for the night correction. If one of the time frames is set 'active' the night correction is used. For the case that none of the them is in
from 15:00 to 18:00, for it set t1-on to tue,22:00, t1-off to tue,6:00 and t2-on to tue,15:00 and t2-off to tue,18:00. For the case that all time frames are set to 00:00 the night correction is deactivated and the heating curcuit runs 7days, 24h in the daily operation (factory setting).	use the day correction brings more the flow temperature and set flow temperature in line. A time frame is activated when the current time is located between the switch-on and -off point.
Sen.flow: set ARRANGEMENT/HEAT.CURCUITS/HEAT.CURCUIT/EXPERT/SEN.FLOW e.g. "2"	Adjustment channel for assigning the flow sensor. The needed sensor must be assigned. Therefor an already used sensor can be applied. Through this its original function is not influenced.
Factory setting: sensor 9 Senoutdoor.: set ARRANGEMENT/HEAT.CURCUITS/HEAT.CURCUIT/EXPERT/SEN.OUTDOOR e.g. ,,15" factory setting: sensor 11	Adjustment channel for assigning the outside temperature sensor. The needed sensor must be assigned. Therefor an already used sensor can be applied. Through this its origi- nal function is not influenced. Note: By additional use of the module RESOL HKM2 just 1 out- side temperature sensor is needed. Since the 2 heating curcuits controll after the same outside temperature the following adjustments have to be made:
Aftheat.: set <i>RRRRNGEMENT/HERT.CURCUITS/HERT.CURCUIT/EXPERT/RFTHERT</i> to " <i>YES</i> "	If the store temperature falls below the flow temperature at + 4 K, the after heating switches-on (relais depending on system, see survey "allocation of relais"). It switches off if the store temperature oversteps the set flow temperature at + 14 K.
S1(2) store: set ARRANGEMENT/HEAT.CURCUITS/HEAT.CURCUIT/EXPERT/S1(2) STORE e.g. ,,2" factory setting: Sensor 12	Adjustment channel for assigning the store temperature sensors. The needed sensor must be assigned. Therefor an already used sensor can be applied. Through this its origi- nal function is not influenced. The related temperature Tsp is shown in the menu heating curcuit.

set

Man.corr.:

ARRANGEMENT/HEAT.CURCUITS/HEAT.CURCUIT/EXPERT/MAN.CORR. to "YES" The remote control enables a parallely movement of the heating curve (± 15 K). In addition the heating curcuit can be switched off via the remorte control. The remote control is optional and it is not included in the full kit.

The heating curcuit can be switched off manually, if

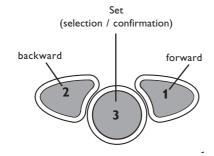
• the remote control is set to the position "heating curcuit off".

The heating curcuit switches off automaticly, if

- the adjusted flow maximum temperature is exceeded
- the outside temperature is higher than the adjusted summer temperature.
- the flow temperature sensor is defective.

Heating curcuit swichtes-off means that the heating curcuit pump is deactivated and the mixer is closed.

A rapid heating process of the heating curcuit just take place via a remote control by adjusting it to "rapid heat process". It signifies that the heating curcuit heats with the adjusted maximum flow temperature.


Sen.remote:

set *RRRRNGEMENT/HERT.CURCUITS/HERT.CURCUIT/EXPERT/SEN.REMOTE* e.g. "8" factory setting: Sensor 10 Adjustment channel for assigning the store temperature sensor. The needed sensor must be assigned. Therefor an already used sensor can be applied. Through this its original function is not influenced. The related remote controller correction Hand-cor. is shown in the menu heating curcuit.

6. Commissioning:

6.1 Commissioning the controller

System 1:1 collector	- 1 store
System 2: east-/west roof- collectors	- 1 store
System 3:1 collector	- 2 stores
System 4: east-/west roof- collectors	- 2 stores
System 5:1 collector	- 3 stores
System 6: east-/west roof- collectors	- 3 stores
System 7:1 collector	- 4 stores

For first commissioning of the system, the main menu is shown on the display. The adjustments of the controller must perhaps be adapted to an existing system. The operation is effected by 3 pushbuttons:

- 1. Selct language (RRRRNGEMENT/RDJ.VRLUE5).
- 2. Set time (*RRRANGEMENT/RDJ.VRLUES*).
- 3. Choose system (SOLAR/OPTIONS/SYSTEM).
- 4. Select options (SOLAR/OPTIONS and/or RRRANGEMENT/ OPTIONS).
- 5. In the submenu of the menu *SOLAR* and *ARRANGEMENT*check the controller's parameters and possibly change them.
- 6. Test the relais. For it switch the accordant relais manually in the menu *MRNURL OP*.
- 7. Finally switch-on the automatic operation for the relais in the menu *MANUAL DP*.

The new adjustments are automatically saved and are preserved even in case of power failure.

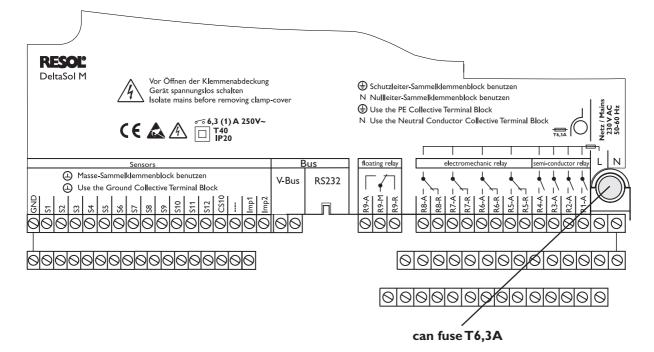
Please note:

The controller switches independantly into the menu *MERSURED VALUES* or *MESSAGE MENU* if no adjustment or change is made within 4 minutes. Please select and shortly press the menu button *RETURN* in order to get back to the main menu. In case of adjustments and security inquiries without any change, the controller switches back to the respective menu after 7 seconds.

6.2 Adjustment for operation with solar cell

- Set type of CS10 (EXPERT/EXP.-SENSOR5).
- Calibrate CS10 (EXPERT/SENSORS).
 For the calibration CS10 has to be disconnected!

7. Tipps for fault localization:



Please separate the controller from line voltage before opening the housing.

If the controller **RESOL DeltaSol®** M does not work faultlessly, please check the following items:

1. Power supply:

Check power supply if the controller if the control lamp for operation is expired. The controller is protected with 1 can fuse. This fuse can be replaced by removing the aperture and clamp cover (spare fuse is enclosed in accessory bag).

2. Sensor	defect:
-----------	---------

The control lamp for operation flashes red and a message is shown on the display if there is a malfunction in the control circuit due to a sensor defect.

Sensor cable open means that a sensor cable is broken and

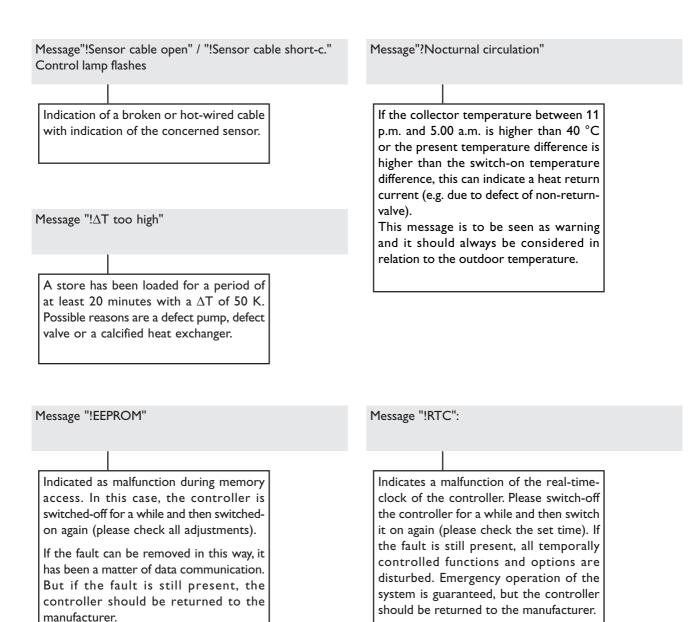
Sensor line short-circuit is shown for a hot-wired sensor cable with indication of the concerned sensor. In case of sensor defects, the sensor values can be checked.

Short-circuit:	Short-circuit of a sensor cable with indicaton of the concerned temperature sensor. The error code -888.8 is shown
	on the display.
Cable break:	Interruption of the sensor cable with

Cable break: Interruption of the sensor cable with indication of th concerned temperature sensor. The error code 888.8 is shown on the display.

Disconnected PT1000 temperature sensors can be checked with a resistance meter. Please check the resistances in the table opposite.

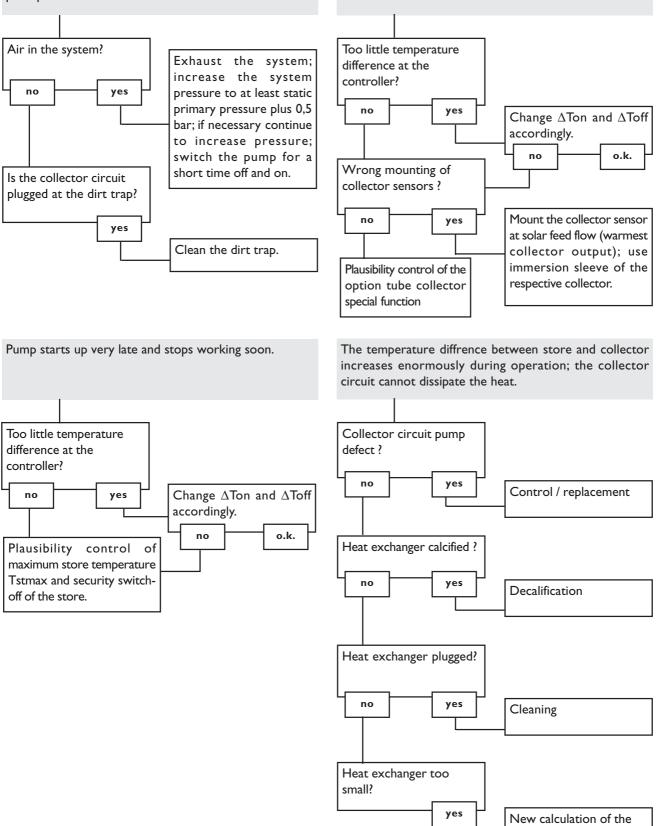
°C	Ω	°C	Ω
-10	961	55	1213
-5	980	60	1232
0	1000	65	1252
5	1019	70	1271
10	1039	75	1290
15	1058	80	1309
20	1078	85	1328
25	1097	90	1347
30	1117	95	1366
35	1136	100	1385
40	1155	105	1404
45	1175	110	1423
50	1194	115	1442


- - -

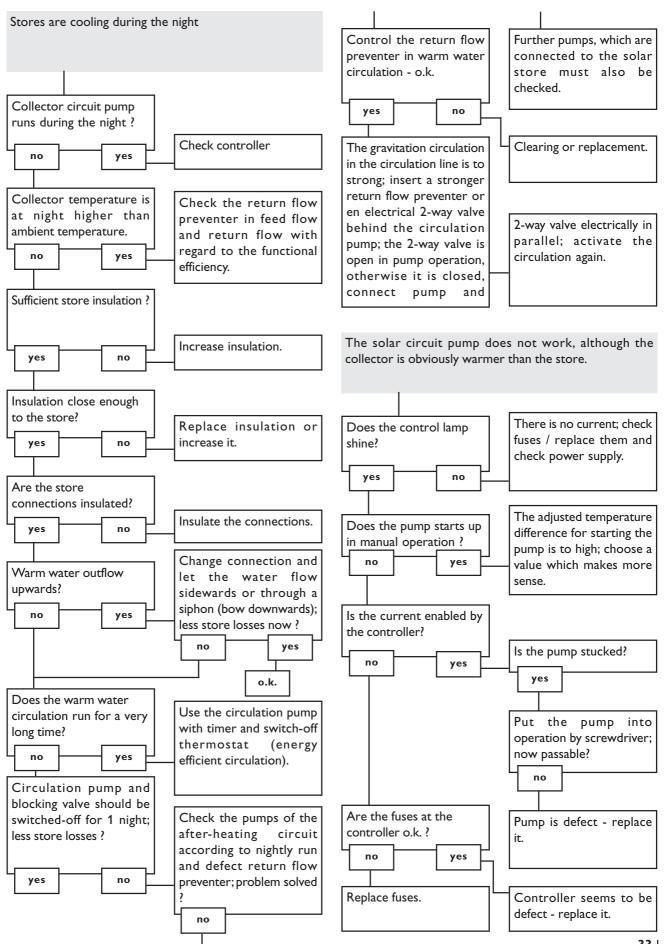
Resistance values of PT1000-sensors

3. Messages:

If a malfunction occurs, a message is given on the display of the controller:



4. Various:


Pump is overheated, but no heat transfer from collector to the store, feed flow and return flow are the same warm; perhaps also bubble in the lines.

Pump starts for a short moment, switches-off, switches-on again, etc. ("controller jitting")

dimension.

Your wholesaler:

Notes

Design and specifications are subject to change without notice. Illustrations mya differ slightly from production models.