

www.regulus.eu

Installation and Operation Manual **RegulusRGMAT E W-iPWM LOAD UNIT** with PARA 25/8 for heating systems

EN

1. Introduction

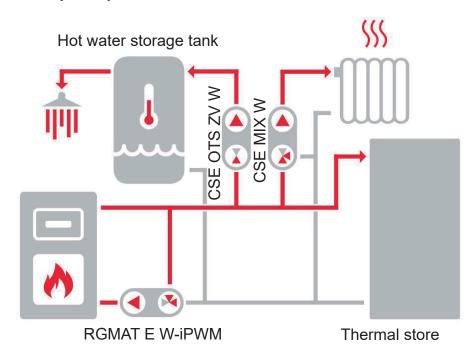
Regulus RGMAT E W-iPWM Load Unit makes boiler installation quicker as it contains all components needed for boiler circuit circulation and for boiler protection against low-temperature corrosion. It is designed to be installed directly on return piping. The distance of pipe axis from a wall shall be at least 100 mm to enable insulation removal if needed.

This Load Unit is intended for hydronic fireplaces and solid-fuel boilers.

2. RGMAT E W-iPWM Load Unit Description

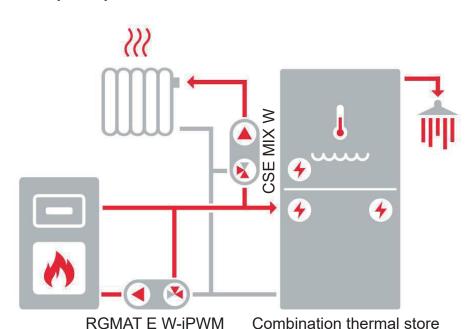
RGMAT E W-iPWM keeps the temperature in a hydraulic boiler circuit above the flue gas condensation temperatures, which prevents so called low-temperature corrosion of the boiler combustion chamber. This limits condensation and boiler tarring significantly, the efficiency of fuel combustion increases and service life of the boiler is extended.

Main Features	
Function	maintaining stable inlet temperature into a boiler (fireplace) through a load valve
Application	Load Unit for solid-fuel boilers and fireplaces; it prevents low-temperature corrosion and boiler (fire) fouling
Description	consists of Wilo PARA 25/8 iPWM1 pump, fittings w. integrated ball valve, TSV3B valve (with automatic bypass balancing), thermometer and insulation
Working fluid	water; water/glycol mixture (max. 1:1) or water-glycerine mixture (max. 2:1)
Installation	on return piping, min. distance of the pipe axis from a wall is 100 mm


Codes	max. boiler output
18131 for 65°C opening temperature	31 kW
18133 for 55°C opening temperature	44 kW

Data for RGMAT E W-iPWM Pump Station		
Fluid working temperature	5 - 95 °C	
Max. working pressure	6 bar	
Min. working pressure	0.5 bar	
Ambient temperature	5 - 40 °C	
Max. rel. humidity	80 % non condensing	
Power supply	230 V, 50 Hz	
Insulation material	EPP RG 60 g/l	
Overall dimensions	305 x 170 x 135 mm	
Total weight	3.3 kg	
Connections	3x G 1" F	

Accessories	
Bypass with non-return valve	code 16 126

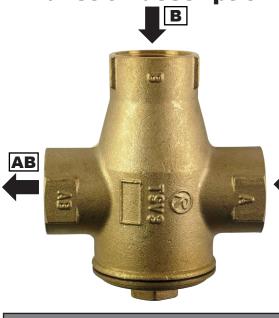

3. RGMAT E W-iPWM Connection Diagram

Example of possible connection I

The diagram shows a typical connection of a solid fuel boiler, thermal store and heating circuit (with the recommended CSE MIX W pump station – not included in supply). If the boiler is used also for hot water heating, it is recommended to install a CSE OTS ZV W pump station (not included in supply).

Example of possible connection II

The diagram shows a typical connection of a solid fuel boiler, combination thermal store and heating circuit (with the recommended CSE MIX W pump station – not included in supply).

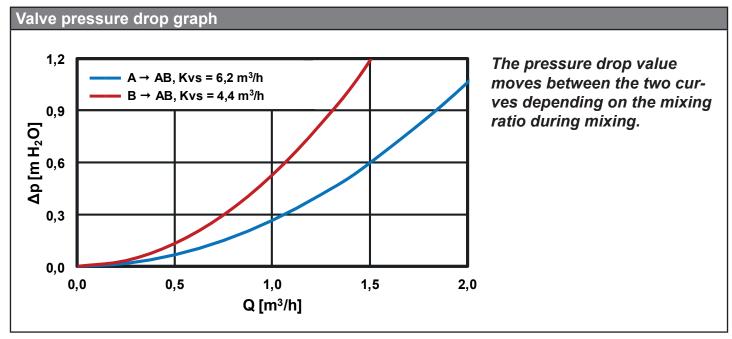

Install the Load Unit respecting the following instructions:

Connect the Load Unit outlet marked **AB** to the piping entering the boiler. Connect the return line from the heating system to the **A** inlet, and the outlet pipe from the boiler to the **B** inlet via a T-piece. Take care to install shut-off valves where necessary to avoid draining the whole system for valve cleaning or replacing the thermostatic element.

When the connecting pipes are not arranged or sloped properly, the thermostatic valve may get blocked by air inside. This may hinder or even disable its operation.

Always respect valid rules and boiler manufacturer's data during installation.

4. Function description of TSV3B valve



The TSV3B load valve is fitted with an integrated thermostatic insert that will close the **A** inlet (from a heating system), if the return water temperature to the boiler (**AB** outlet) is lower than the opening one. As soon as the opening temperature is reached, the thermostat starts opening the **A** inlet slowly and mixing the cold return water with the hot water from the **B** inlet (boiler flow) with the aim to reach the opening temperature (**AB** outlet) in the return pipe.

At the same time, the valve closes the **B** inlet, limiting so the hot water flow coming from the bypass till its complete tight closure. Thanks to this, no balancing valve is needed. The load valve is made of brass, element and plug seals are in EPDM, cone seal is made of NBR.

Technical Data		
Max. working temperature	95 °C	
Max. working pressure	6 bar	
Valve opening temperature	depending on the thermostatic element	
Control range	t _{valve opening} + 5 °C	
Valve Kvs (A→AB direction)	6.2 m³/h.	
Valve Kvs (B→AB direction)	4.4 m³/h	
Connections	3x G 1" F	
Nominal inner diameter	DN 25	

Materials		
Housing, cone and plug	brass	
Spring	stainless steel	
Element and plug seals	EPDM	
Cone seal	NBR	

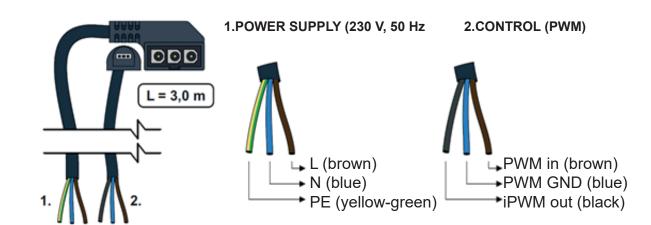
5. Wilo-Para iPWM1 Pump

5.1. General Info

The Wilo Para 25/8 iPWM1 is a wet running circulation pump. The pump speed is controlled by the PWM signal. When the PWM signal is disconnected, the pump runs at its maximum speed. The operating status and possible faults of the pump are indicated by LEDs directly on the pump. The pump is able to send the current flowrate electronically to an external controller. The controller must be equipped with an iPWM read input and a flow calculation function.

The high efficiency circulation pumps of the PARA iPWM1 series are used exclusively for the circulation of liquids in hot water heating systems. Operating the pump in other systems or in systems containing too little water, air bubbles or not pressurized can lead to its rapid destruction.

5.2. Permitted and Prohibited Pump Positions



Prohibited Pump Station positions

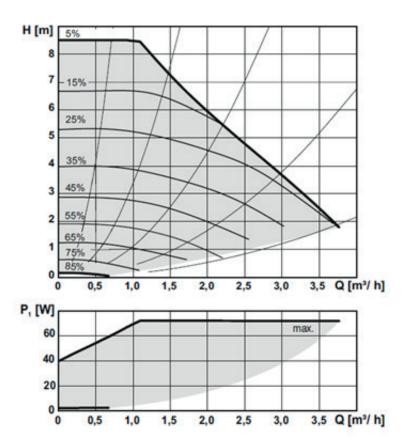
5.3. Pump Wiring

The pump must be wired / disconnected by a qualified person in compliance with EN 50110-1!
Wilo PARA 25/8 iPWM1 pump wiring

5.4. Technical Data

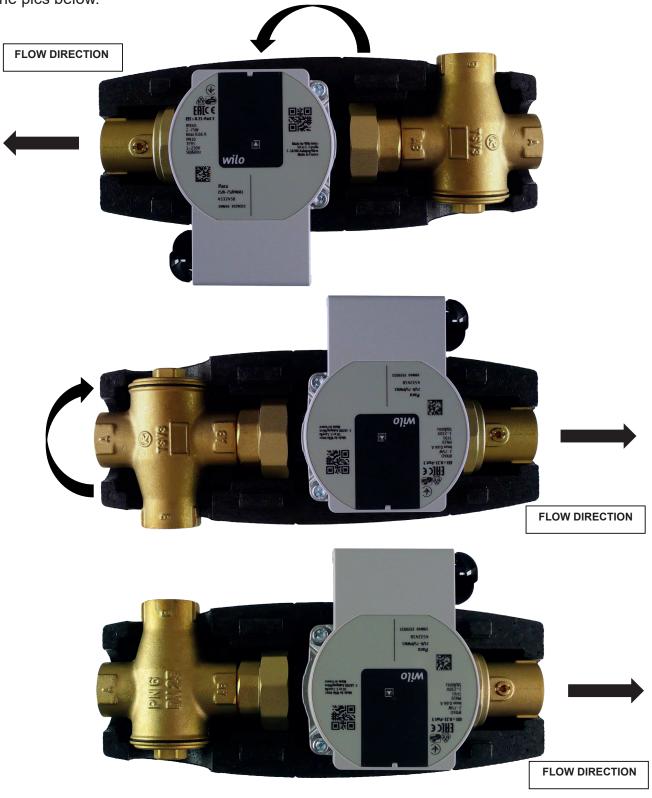
Wilo PARA 25/8 iPWM1		
Electric Data		
Power supply	230 V, 50 Hz	
Power input (min./max.)	2 / 75 W	
Current (min./max.)	0.03 / 0.66 A	
Max. speed	4800 rpm	
Speed control	frequency converter	
Energy Efficiency Index	≤ 0,21 by EN 16 297/3	
IP rating	IPX4D	
Motor protection	integrated	
Operating Parameters		
Fluid working temperature	0 - 95 °C	
Max. static pressure	10 bar	
Max. head	8.4 m	

5.5. FAULTS AND THEIR REASONS


The LED light signals a defect. The pump will switch off (depending on the defect type) and try to restart.

LED signals		State description and possible fault reasons	
	GREEN IS LIT	1 - pump is running in trouble-free operation	
	RED IS LIT	1 - rotor is blocked	
•	RED IS LIT	2 - electric motor winding defect	
		1 - power supply lower/higher than 230 V	
	FLASHING RED	2 - electric short circuit in pump	
		3 - pump overheated	
-		1 - unforced fluid circulation through the pump	
FLASHING R	FLASHING RED AND GREEN	2 - pump speed lower than desired	
		3 - air in pump	

FAULTS	REASONS	TROUBLESHOOTING
The pump is not running despite the power supply turned on	Faulty electrical fuse	Check the fuses
	The pump is not energized	Remove the power interruption
The pump makes noises	Cavitation due to insufficient inlet pressure	Increase the pressure within the permitted range
		Check the head adjustment, or set a lower head
The building is not warming up	Heat output of heating surfaces too low	Increase the desired value
		Set the control method to Δp-c


If the fault cannot be rectified, contact a qualified technician.

5.6. Performace curves for Wilo Para 25/8 iPWM1 pump

6. Installation options

This Load Unit comes in the version for horizontal installation to the right of a boiler. However, it can be installed also into vertical piping or horizontally to the left of a boiler. When being installed horizontally to the left of a boiler, the Load Unit needs to be turned by 180° and the TSV3B valve turned as shown in the pics below.

©2022 We reserve the right to errors, changes and improvements without prior notice.

v1.2-08/2022

REGULUS spol. s r.o.

E-mail: sales@regulus.eu Web: www.regulus.eu